Connect with us

Technology

HOW ARE SPEECH RECOGNITION AND AI FIGHTING FRAUD?

Published

on

Nigel Cannings the founder of Intelligent Voice

Nigel Cannings is the founder of Intelligent Voice

 

Speech recognition and AI provide innovative methods for businesses to significantly develop and improve their fraud detection systems. With the technology and techniques used by fraudsters rapidly changing, AI can evolve and adapt to provide more comprehensive protection, assisted by the use of machine learning. The acceptance of AI as a crucial asset to fraud detection and prevention is already being recognised, with 31% of CIOs having already reported the implementation of AI systems in their business, and a furth 23% expressing intent to have the technology deployed within the next year. Crucial to the effective implementation of this technology, however, is having a basic understanding of how it functions and will assist business needs.

 

What are the roles of AI and machine learning in fraud detection and prevention?

AI can take a variety of forms, with the core systems required for anti-fraud measures being Conversational AI, Natural Language Processing (NLP), and Automatic Speech Recognition (ASR). Automated, voice-enabled applications rely on the use of Conversational AI to allow efficient communication between technology and humans. ASR is the model tasked with translating verbal data into different formats, facilitating the recording and processing of data. The crucial bridging of the gap between the rules of human language and machine learning is carried out by NLP systems, allowing technology to process the sentiment and intent that can be derived from human interaction.

Together, these AI systems are used to both develop and augment machine learning models. The machine learning process involves the application of data from previous interactions with the intent to enable algorithms and analysis to develop and evolve alongside rapidly changing fraudulent technology and techniques. Through the collaboration between machine learning, Conversational AI, NLP, and ASR, data that would have previously been considered difficult or impractical to apply to anti-fraud measures can be repurposed. Fraud detection procedures such as checking for consistency in the details of claimant stories, identifying connections between claimants and witnesses that may be problematic, or detecting more complex behavioural indicators can be carried out more effectively, enabling a more comprehensive anti-fraud system.

 

What are the features that AI can recognise, and how does this help prevent fraud more efficiently?

Modern AI systems have the capabilities to detect a range of both speech and behavioural patterns, providing a more comprehensive analysis of the mannerisms and language features displayed in customer-facing interactions. There are several features that have been traditionally associated with fraudulent intent, with the most notable being frequent pauses in speech, hedging, delaying responses, indirectly answering questions, and displaying heightened emotional responses. AI not only has the ability to detect these traditional features of fraud, but it will also use its recorded history of confirmed fraudulent calls to continue tracking trends in behaviour and speech by fraudsters. Customers who have been identified to be displaying suspicious behaviour can be more closely monitored, and if the potential for fraud is confirmed, customer records can be updated with the necessary information and warnings concerning their claim. Currently, it is possible to also use AI systems to record a biometric voiceprint of known fraudsters, allowing their detection even when they call back with a new claim and different details. Through these measures, it can be possible to detect fraudulent intent from the first phone call.

However, it is important to be aware that these systems and tactics are not static, and constantly evolve depending on the new techniques being adopted by fraudsters to avoid detection. The most recent development in fraudulent operations is the use of “deepfake” technology, which can be used to mimic audio and mask a human voice in real-time. This allows fraudsters to create entirely new identities to recommit fraud with the same company, without being detected by biometric voiceprint technology. Traditional anti-fraud measures without the input of AI and machine learning will struggle to adapt to these new technological challenges. AI-based systems provide the flexibility and adaptability to allow businesses to keep up with these evolved techniques quickly, often with minimal human involvement.

 

How can speech recognition AI impact wider business goals?

The reach of AI is not limited to efficient fraud detection – important business goals such as the improvement of customer services also benefit significantly from the implementation of AI-based systems. Functions such as sentiment and emotion analysis now allow businesses to detect and interpret the nature of customer experiences, identifying positive and negative language and speech indicators. This enables businesses to gain a better understanding of their customer interactions and where improvements or reviews may be required. This form of analysis can also provide more detailed information about whether customers are displaying a sense of urgency, frustration, contentment, or confidence in response to their experience. Details provided by this analysis allows businesses to create more specific targets and methods to increase customer satisfaction.

Implementing wider behavioural analysis through AI systems also provides new opportunities for businesses to provide improved safeguarding for vulnerable customers. Employees can be notified when customers are displaying worrying indicators of being uncertain, confused, or concerned as a result of their interaction, and respond accordingly. These more vulnerable customers are often unemployed, young, or older adults that may require a more in-depth explanation of how the business can serve their personal needs. Follow up contact, reassurance, or in more extreme cases, welfare checks can be provided to these customers. The introduction of more thorough AI-based analysis can feel more intrusive to some customers – however, this technology also enables the provision of better customer care. The shift towards more analytical, adaptive technology increases our capabilities to care for the most vulnerable in society.

 

Nigel Cannings is the founder of Intelligent Voice, a company leading the international development of proactive compliance and technology solutions for various forms of media. His experience in both technology and law provides a unique insight into the future of these technologies and the legalities surrounding them.

Business

Accounting Automation in the Future

Published

on

Accounting automation is the process of streamlining repetitive tasks in financial processes. For example, some processes like invoicing are time-consuming and repetitive. Automation can reduce manual labor and save businesses both time and money. Also, it helps improve accuracy, reduces errors, and provides more accurate financial reporting.

Accounting automation in the future will be increasingly important for businesses to stay competitive. But every new change comes with both advantages and challenges. Let’s dive in to get ready for this future trend.

 

Potential Future Benefits of Accounting Automation

Increased Efficiency and Cost Savings

Accounting automation is a great way to increase efficiency and cost savings. For example, AI bookkeeping uses advanced algorithms to automate many accounting tasks. So, companies can track expenses, prepare financial reports, and more using AI.

It reduces the time needed for manual entry. So, businesses can spend fewer labor hours on tedious processes. They can increase efficiency by freeing up resources for more strategic work. It also helps reduce errors and inconsistencies associated with manual processes. So, the cost of compliance is lower because of greater accuracy.

 

Improved Accuracy and Reliability

Accounting automation can improve accuracy and reliability in accounting processes. For example, Automating bank reconciliation is less prone to errors from human mistakes or miscalculations. You can automate the process to identify discrepancies between the bank statement and accounting records. It helps to ensure that financial reports remain accurate and reliable. So businesses can take corrective action faster than processing data manually.

 

Streamlined Business Processes

Streamlined business processes involve eliminating unnecessary steps, reducing paperwork, and automating repetitive tasks. This allows businesses to focus on higher-value activities, such as developing new products, improving customer service, and developing strategic plans for the future.

 

Making a Better Decision

Accounting automation can enhance decision-making in 3 ways.

1. It enables businesses to access real-time information from multiple systems. So they can identify trends for better decision-making.
2. Automated accounting also helps with forecasting, budgeting, and auditing tasks. It enables businesses to be more proactive in their decision-making processes.
3. Also, automated accounting tools can integrate with enterprise resource planning (ERP) systems. They can manage data across the enterprise and make concise decisions that are favorable to the company as a whole.

 

Increase Customer Satisfaction

Accounting automation can help businesses increase customer satisfaction by streamlining their processes and providing a more efficient customer experience. For example:
4. Automated accounting systems can automate tedious manual tasks such as invoicing, data entry, and payroll processing. This allows businesses to focus on other aspects of their operations that are more important for customer service.
5. Automated accounting systems can also provide customers with more accurate and timely financial information. The information can help them make better decisions about their finances.
6. Also, accounting automation enables businesses to respond quickly to customer inquiries. It helps reduce wait times and improve the overall customer experience. So, you can build better relationships with their customers.

 

Improved Accessibility

Accounting automation takes place online or comes with cloud-based solutions. So, you can access your information and do your job from anywhere instead of being confined to one spot.

 

Challenges to Implementing Accounting Automation in the Future

Cost of Technology Infrastructure Upgrades

Automating an accounting system often requires businesses to invest in new hardware and software, such as servers and other associated equipment. These upgrades come with a hefty price tag that may be difficult for small businesses to afford.

There are also extra costs, such as installation fees, setup charges, software licensing fees, cloud storage costs, and maintenance fees.

 

Training Requirements for Staff Members

Accounting automation involves using advanced technology to automate certain processes. So, it creates a need for trained staff members who can handle the new technology. Training requirements vary depending on the type of software used.

Some common training includes record-keeping procedures, software applications, and troubleshooting skills.

 

Regulatory Compliance Issues

Accounting automation can be a time-saver, but it also requires firms to be aware of the applicable rules and regulations. Companies must ensure that their automated systems are compliant with relevant laws and regulations such as Generally Accepted Accounting Principles (GAAP), International Financial Reporting Standards (IFRS), and other applicable accounting standards.

Besides, they must also comply with legal requirements related to taxes, financial statements, and other reporting obligations.

So, businesses must consider the complexities of regulatory compliance when automating accounting.

 

Security and Data Protection Concerns

As businesses move their accounting processes to the cloud, they are exposed to a wide range of potential security risks. Data breaches can cause significant damage to the business’s financial and reputational integrity. Besides, the complexity of automated accounting systems can make it difficult to identify and detect suspicious activities or errors in the system.

To ensure data is kept secure, businesses must have strong measures in place to protect against unauthorized access, encryption, and regular backups of data.

Furthermore, companies must train their staff on the proper use of the system. It helps staff to know how to protect confidential information from being accessed or misused by unauthorized personnel.

Businesses may also need an experienced IT team to monitor and maintain the system to keep up with any changes or updates for optimal performance.

 

Final thoughts

Accounting automation has come a long way in the past few decades. It is likely to continue to advance in the future. As technology continues to evolve, more businesses will likely begin taking advantage of automation in their accounting processes. So, businesses should be aware of the potential challenges and prepare to stay competitive.

 

Author bio: Kassidy Li is a Certified Public Accountant and online entrepreneur who is passionate about helping people to solve problems and grow wealth with accounting knowledge and technology. She has 10+ accounting experience in small to large-scared corporations and expertise in financial accounting, management accounting, budgeting, and payroll.

Continue Reading

Business

Three ways data can help financial organisations thrive in today’s economy

Published

on

By Rinesh Patel, Global Head of Financial Services, Snowflake

 

Financial organisations are caught in the middle of an ever-evolving landscape caused, in part, by emergent fintechs, shifting consumer expectations and increased regulatory change. Businesses are therefore turning to their data, re-imagining how they collect, process and analyse it, to drive growth and opportunity.

Despite this intention though, firms can often find themselves overwhelmed with the amount of data at their fingertips. Data tends to reside in individual departments that have no secure, efficient way of sharing it with other teams, creating silos of information. When teams need to collaborate, organisations are faced with additional costs and complexities in the movement of that data. The current infrastructure used by many financial institutions is not able to support the changing requirements of the industry, where data is the lifeblood.

Rinesh Patel

Firms looking to harness their data should leave behind their outdated legacy architecture and implement an enterprise data strategy with a cloud-native platform. They can reposition themselves to accelerate time to market and value, with differentiated products and improved client offerings to gain a critical competitive advantage. Here are three ways that financial services are using better technology and enhanced data management to add business value.

 

Adhering to regulatory requirements

The volume of global regulations and reporting obligations has risen exponentially in the past decade, creating greater complexity and security challenges for firms capturing and processing data. Many of these regulations were taken by supervisors to ensure financial stability after the financial crisis of 2008. Regulators have greater expectations of firms with the aim of risk mitigation and transparency. With advanced technologies facilitating data capture, storage and analysis now available, supervisory bodies are also keen in part, to ask for additional disclosures because it’s now possible to demand more documentation and seek greater transparency.

The landscape of differing interpretations, overlapping regulatory requirements across asset classes and geographies and strict, even unrealistic deadlines for implementation have forced customers to take tactical quick-fix solutions, elevating operational risk and the chance of regulatory fines. Compliance departments have therefore been spending years building reporting processes, managing inconsistent data sets, maintaining ageing data stores and importantly overseeing differing levels of governance, adding more cost and complexity to the task at hand. For a large multi-segment global bank or asset manager this fragmented and manual approach to data management and analysis is not sustainable given the scale of processes and multi-geographic considerations that they have to comply with.

As regulators continue to push the long-term structural change agenda, financial services must now ready themselves to meet more robust reporting requirements to comply with the ever-changing regulatory landscape. The objective is to simplify and better manage data across teams with the governance and security provided by technological capabilities now offered through modern cloud capabilities to drive needed reporting. This will allow firms to replace old and inconsistent data with a centralised data architecture, providing a single source of truth. The time and cost reduction from data sourcing, ingestion, and the normalisation of data for analysis, can shrink to significantly streamline reporting processes.

 

Customer 360 experience

Consumers provide financial institutions with a vast amount of information, ranging from their banking habits to their behavioural preferences. Financial organisations have traditionally been slow to tap into the totality of this information to provide a better experience for customers.

The quest to provide greater visibility and a 360-degree view of customer behaviour is at the core of financial services organisations’ priorities. Customers want smooth, easy digital experiences that can speak to their desire for ease of use and convenience. This is seen in the ways virtual banking consumers have opted for technologies that are simple to interact with, self-directed and frictionless when it comes to carrying out digital transactions. New regulations, such as PSD2 and rules around open banking have also primed customers to expect more.

The challenge for legacy institutions is to bring the ease and usability of digital-first platforms with the sophistication of a major, global provider. Tapping into the full spectrum of data created by consumers is central to a successful transition.

Wealth advisory, investment management professionals are increasingly looking at data capabilities to support ongoing relationship management with their clients. Using data to understand customers in this way helps banks to successfully move customers up the wealth value chain. Wealth management organisations can digitise the investment process – from finding customers to managing accounts, and offering bespoke plans. Effective use of data in this sector can free up time for advisors, helping to retain key customers and charge higher commission levels thanks to a new level of personalised service.

 

Developing an effective ESG strategy

Environmental, social and corporate governance (ESG) considerations have grown in significance with increasing stakeholder pressures, driving a response by firms to prioritise their sustainability agenda. To understand, evaluate the problem and take action, firms need access to technology providing holistic ESG data capabilities and solutions, with performance and scale.

Financial firms are amassing large data sets from the public sector, including government reports, scientific bodies and private sector reports, to understand and address the climate challenge. Businesses are moving with urgency to acquire robust data sets, to meet ESG criteria and sustainability metrics needed to evaluate impact and make progress against their own commitments. There are several pervasive business use cases for teams experiencing ESG data challenges, including portfolio construction, financial planning and regulatory reporting that will require an effective ESG data management strategy.

Ever present challenges in the ingestion, standardisation, and sharing of ESG data will be at the forefront of every organisation – as they process the magnitude of the challenge and transform their operations to address the issue. With cloud-native solutions, firms can use ready-to-use query data across established marketplace data sets. They can then share that data across teams in a secure, governed way – with greater speed to market. Organisations can meet the need for scalable analytics, and access a data ecosystem to build their own proprietary ESG applications for different user and workflow requirements.

 

A business fit for the future 

With data cloud solutions, businesses can effectively analyse the vast amounts of data available to them, equipping them to meet the ever-changing financial landscape. Leaving behind legacy systems will open up a multitude of opportunities and benefits that will drive business growth. This includes developing a 360 view of the customer, improved data governance and the opportunity to use data to support an effective ESG strategy. Without the ability to harness data through the cloud, companies will get left behind the competition and struggle to meet the standards that modern consumers expect.

 

 

Continue Reading

Magazine

Trending

Business3 days ago

How FS organisations can utilise data to boost customer experience

Charles Southwood, Regional VP and GM – Northern Europe and Africa at Denodo We’ve all heard the age-old adage “the customer...

Business3 days ago

The Evolution of SoftPoS in 2023

By Brad Hyett, CEO of phos Contactless payments and digital wallets have surged in popularity in recent years. Part of...

Banking3 days ago

The Importance of Digital Trust in Banking and Finance

By Maeson Maherry, COO at Ascertia   With the rising adoption of eSignatures and the acceleration of digital transformation, trust...

Business4 days ago

Taking Financial Services to the Edge

Authored by Pascal Holt, Director of Marketing, Iceotope   Edge computing, cloud, and AI are changing the competitive landscape for...

Business5 days ago

Accounting Automation in the Future

Accounting automation is the process of streamlining repetitive tasks in financial processes. For example, some processes like invoicing are time-consuming...

Banking6 days ago

How banks can help customers during the cost of living crisis

 Lavanya Kaul Head of BFSI, UK & Ireland, LTI Mindtree   Surging energy and food prices are significantly driving up...

Finance6 days ago

Weathering the economic storm in 2023

Nikki Dawson, Head of EMEA Marketing at Highspot   New year, new business challenges. When it comes to creating and...

Business7 days ago

Three ways data can help financial organisations thrive in today’s economy

By Rinesh Patel, Global Head of Financial Services, Snowflake   Financial organisations are caught in the middle of an ever-evolving...

Finance1 week ago

What is the right strategy for the end of money?

By John Barber, VP & Head of Europe at Infosys Finacle More than five thousand years ago, humans replaced barter...

Business1 week ago

2023 – what will happen in the payment world?

Tommaso Jacopo Ulissi, Head of Group Strategy, Nexi Group 2022 was a year of transition for consumers, as BNPL (Buy...

Business1 week ago

2023 crypto trends that businesses need to know about

By Marcus de Maria, Founder and Chairman of Investment Mastery   As cryptocurrencies have started to enjoy wider global acceptance...

Business1 week ago

Defining Fraud in 2023

Scott Buchanan, Chief Marketing Officer at Forter Fraudsters are fluid — they constantly experiment with new tactics to find cracks in...

Business1 week ago

How accounting software may hold the key to keeping on top of credit control

By Paul Sparkes, Commercial Director of award-winning accounting software developer, iplicit.   One of the first rules everyone learns about...

Banking1 week ago

Coreless Banking: How banks can thrive in 2023

Hans Tesselaar, Executive Director of BIAN   In recent years, banks have faced immense disruption and struggled to transform with...

Technology1 week ago

Will cyberattacks be uninsurable in 2023? Three steps that financial organisations can follow now

By James Blake, Field CISO of EMEA, Cohesity   The growing number of cyber attacks and subsequent damage has led...

Business2 weeks ago

Why Financial Services Institutions must de-risk the customer journey in 2023

By Perry Gale, VP EMEA at Cyara   From rising interest rates, to the cost-of-living crisis and the ongoing recession,...

Business2 weeks ago

Why finance needs a technological leap in fraud prevention

Brett Beranek, VP & General Manager, Security and Biometrics at Nuance Communications   Banking fraud is always a punishing experience for...

Banking2 weeks ago

How Banks Should be Future-Proofing Themselves  

By John da Gama-Rose, Head of BFS, Global Growth Markets, Cognizant  Businesses across the world are facing a combination of...

Business2 weeks ago

The Promise of AI in Financial Services in 2023

By Kevin Levitt, Global Industry Business Development, Financial Services, NVIDIA   As we enter the new year, many are left...

Banking2 weeks ago

What to expect from banking and payments in 2023

Michael Mueller, CEO, Form3   The banking industry went through a number of significant challenges in 2022. The steep increase...

Trending